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Vector Operations
1. Notation. Vector quantities are printed in boldface type, and

scalar quantities appear in lightface italic type. Thus, the vector 7
quantity V has a scalar magnitude V. In longhand work vector
quantities should always be consistently indicated by a symbol R _-~
suchas V or 7 to distinguish them from scalar quantities. _-- - Q
2. Addition ’
Triangle addition P+Q=R T R
Parallelogram addition P + Q =R Q:’ "/
Commutative law P+Q=Q+P e g
Associative law P+(Q R)=(P+Q)+R ‘;
3. Subtraction N
P-Q=P+(-Q) P-@r /8

4. Unit vectors i, |, k “

V=Vxi+Vyj+Vzk kaﬂ,r*”l\\
where KV, < AN v
VI =V=yV2+V2+V2 : \T!:,f :

. ) . [ I~ —
5. Direction cosines I | e |
I, m, n are the cosines of the angles between V and the x-, y-, z-axes. ==V, :
I =VxV. m =WN. n=Vz\V SO s
so that iv =
V = V(i + mj +nk) BN

and *

I2+m?2+n2=1
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Dot or scalar product

P-Q =PQcos

This product may be viewed as the magnitude of P multiplied by the
component Q cosd of Q in the direction of P, or as the magnitude of Q
multiplied by the component P cosé@ of P in the direction of Q.
Commutative law P-Q=Q-P
From the definition of the dot product

icizj-j=k k=1

i'j:j’i:i'k=k’i:j'k=k'j:O

P-Q =(P,i +P J+PK) - (Qi +Qyj+QKk) k

= I:)x'Qx"-Py'Qy"-Pz'Qz

P:P=P2+P P2
It follows from the definition of the dot product that two vectors P and Q
are perpendicular when their dot product vanishes, P- Q =0 P
The angle 6 between two vectors P;and P,may be found from their dot product c.picooronn, +
P,= P,P, cosb , which gives

PP, PP +P P 4P Py
cosf = PP, = PP, = LI, + mm, +nyn,

where |, m, n stand for the respective direction cosines of the vectors. It is also observed that two
vectors are perpendicular to each other when their direction cosines obey the relation |1, + n;n,+
m;m,=0

Distributive law P-(Q+R)=P-Q+ P-R
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Cross or vector product: The cross product P x Q of the two vectors P and Q is defined as a
vector with a magnitude

|Px Q| = PQ sin6
and a direction specified by the right-hand rule as shown. Reversing the vector order and using
the right-hand rule give Q x P =-P x Q.
Distributive lawPx (Q +R) =PxQ +PxR
From the definition of the cross product, using a right-handed coordinate system, we get
ixj=k jxk=i kxi=]j

jxi=-k kxj=-i iXk=-j / J{"‘;‘
IXi =jxj =kxk=0 < _
With the aid of these identities and the distributive law, the /‘K__’;:__ __% P
vector product may be written Q
P xQ =(Pi+Pj+PK)x(Qd +Qj +QKk)
= (Psz - PzQy)I + (PZQX - PXQZ)J 5 (Pny - Pny)k P
The cross product may also be expressed by the determinant \
i j Kk
Px Q = Px Py Pz C_..:)
Qe Qy 0O
Additional relations
Triple scalar product (Px Q)R =R - (P x Q) . The dot and
cross may be interchanged as long as the order of the vectors is 1
maintained. Parentheses are unnecessary since P x (Q - R) is "1
meaningless because a vector P cannot be crossed into a scalar
Q .R. Thus, the expression may be written \q
PxQ-R =P-QxR QxP=-PxQ
The triple scalar product has the determinant expansion
i & k
PXQ'R= Qx Qy Qz
R, R,
Triple vector product (P x Q) x R=-R x (P x Q) = R x (Q x P). Here we note that the
parentheses must be used since an expression P x Q x R would be ambiguous because it would
not identify the vector to be crossed. It may be shown that the triple vector product is equivalent
to PXQXR=R-PQ-R-QP or P x(QxR)=P-RQ-P-QR. The first term in the
first expression, for example, is the dot product R - P, a scalar, multiplied by the vector Q.
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TWO-DIMENSIONAL FORCE SYSTEMS
Rectangular Components
The most common two-dimensional resolution of a force vector is into rectangular components.
It follows from the parallelogram rule that the vector F of Fig. 2/5 may be written as:
F=F,+F, (2/1)
where F, and F, are vector components of F in the x- and y-directions.
Each of the two vector components may be written as a scalar times the
appropriate unit vector. In terms of the unit vectors i and j of Fig. 2/5,
F.=F, and F=Fj, and thus we may write:
F=F,i+Fyj (2/2)
where the scalars F, and F, are the x and y scalar components of the vector F. The scalar
components can be positive or negative, depending on the quadrant into which F points.
For the force vector of Fig. 2/5, the x and y scalar components are both positive and are
related to the magnitude and direction of F by.

- 2 1(Fy
F,=Fcos® F,=Fsin@ F= [F:+F; 0 = tan~ e (2/3)
X

Determining the Components of a Force

Dimensions are not always given in horizontal and vertical directions, angles need not be
measured counterclockwise from the x-axis, and the origin of coordinates need not be on the
line of action of a force. Therefore, it is essential that we be able to determine the correct
components of a force no matter how the axes are oriented or how the angles are measured.
Figure 2/6 suggests a few typical examples of vector resolution in two dimensions.

Figure 2/5

Y. /
~ /|
/
\‘\
F =—Fcos f8 . *
F =-Fsing F,=Fsin(z-4) F1=Fc?s(ﬂ—ar)
F,=—Fcos(r— ) F,=Fsin(f—a)
Figure 2/6
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