Vector Operations

1. Notation. Vector quantities are printed in boldface type, and scalar quantities appear in lightface italic type. Thus, the vector quantity \mathbf{V} has a scalar magnitude V. In longhand work vector quantities should always be consistently indicated by a symbol such as $\underline{\mathrm{V}}$ or \vec{V} to distinguish them from scalar quantities.

2. Addition

$$
\begin{array}{ll}
\text { Triangle addition } & \mathbf{P}+\mathbf{Q}=\mathbf{R} \\
\text { Parallelogram addition } & \mathbf{P}+\mathbf{Q}=\mathbf{R} \\
\text { Commutative law } & \mathbf{P}+\mathbf{Q}=\mathbf{Q}+\mathbf{P} \\
\text { Associative law } & \mathbf{P}+(\mathbf{Q} \mathbf{R})=(\mathbf{P}+\mathbf{Q})+\mathbf{R}
\end{array}
$$

3. Subtraction
 3.Subtraction

$$
\mathbf{P}-\mathbf{Q}=\mathbf{P}+(-\mathbf{Q})
$$

4. Unit vectors i, j, k

$$
\mathbf{V}=\boldsymbol{V} x \mathbf{i}+\boldsymbol{V} y \mathbf{j}+\boldsymbol{V} z \mathbf{k}
$$

where

$$
|\mathbf{V}|=V=\sqrt{V_{x}^{2}+V_{y}^{2}+V_{z}^{2}}
$$

5. Direction cosines

l, m, n are the cosines of the angles between \mathbf{V} and the x-, y-, z-axes.

$$
l=V x / V \quad m=V y / V \quad n=V z / V
$$

so that

$$
\mathbf{V}=V(l i+m \boldsymbol{j}+n \boldsymbol{k})
$$

and

$$
l^{2}+m^{2}+n^{2}=1
$$

UNIVERSITYOFBASRAH
 COLLEGEOF ENGINEERING

MECHANICAL ENGINEERING DEPARTMENT

Dot or scalar product

$$
\mathbf{P} \cdot \mathbf{Q}=P Q \cos
$$

This product may be viewed as the magnitude of \mathbf{P} multiplied by the component $Q \cos \theta$ of \mathbf{Q} in the direction of \mathbf{P}, or as the magnitude of \mathbf{Q} multiplied by the component $P \cos \theta$ of \mathbf{P} in the direction of \mathbf{Q}.

Commutative law $\mathbf{P} \cdot \mathbf{Q}=\mathbf{Q} \cdot \mathbf{P}$
From the definition of the dot product

$$
\begin{aligned}
& \mathbf{i} \cdot \mathbf{i}=\mathbf{j} \cdot \mathbf{j}=\mathbf{k} \cdot \mathbf{k}=\mathbf{1} \\
& \mathbf{i} \cdot \mathbf{j}=\mathbf{j} \cdot \mathbf{i}=\mathbf{i} \cdot \mathbf{k}=\mathbf{k} \cdot \mathbf{i}=\mathbf{j} \cdot \mathbf{k}=\mathbf{k} \cdot \mathbf{j}=\mathbf{0} \\
& \mathbf{r} \cdot \mathbf{Q}=\left(P_{x} \mathbf{i}+P_{y} \mathbf{j}+P_{z} \mathbf{k}\right) \cdot\left(Q_{x} \mathbf{i}+Q_{y} \mathbf{j}+Q_{z} \mathbf{k}\right) \\
& \\
& =P_{x} \cdot Q_{x}+P_{y} \cdot Q_{y}+P_{z} \cdot Q_{z}
\end{aligned}
$$

$$
\mathrm{P} \cdot \mathrm{P}=P_{\mathrm{x}}{ }^{2}+P_{\mathrm{y}}{ }^{2}+P_{\mathrm{z}}{ }^{2}
$$

It follows from the definition of the dot product that two vectors \mathbf{P} and \mathbf{Q} are perpendicular when their dot product vanishes, $\mathbf{P} \cdot \mathbf{Q}=\mathbf{0}$
The angle θ between two vectors \mathbf{P}_{1} and \mathbf{P}_{2} may be found from their dot product
 $\mathbf{P}_{2}=P_{1} P_{2} \cos \theta$, which gives

$$
\cos \theta=\frac{\mathbf{P}_{\mathbf{1}} \cdot \mathbf{P}_{2}}{P_{1} P_{2}}=\frac{P_{1_{x}} P_{2_{x}}+P_{1_{y}} P_{2_{y}}+P_{1_{z}} P_{2_{z}}}{P_{1} P_{2}}=l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}
$$

where l, m, n stand for the respective direction cosines of the vectors. It is also observed that two vectors are perpendicular to each other when their direction cosines obey the relation $l_{l} l_{2}+n_{l} n_{2}+$ $m_{1} m_{2}=0$

Distributive law $\mathbf{P} \cdot(\mathbf{Q}+\mathbf{R})=\mathbf{P} \cdot \mathbf{Q}+\mathbf{P} \cdot \mathbf{R}$

MECHANICAL ENGINEERING DEPARTMENT

Cross or vector product: The cross product $\mathbf{P} \times \mathbf{Q}$ of the two vectors \mathbf{P} and \mathbf{Q} is defined as a vector with a magnitude

$$
|\mathbf{P} \times \mathbf{Q}|=P Q \sin \theta
$$

and a direction specified by the right-hand rule as shown. Reversing the vector order and using the right-hand rule give $\mathbf{Q} \times \mathbf{P}=-\mathbf{P} \times \mathbf{Q}$.
Distributive law $\mathbf{P} \times(\mathbf{Q}+\mathbf{R})=\mathbf{P} \times \mathbf{Q}+\mathbf{P} \times \mathbf{R}$
From the definition of the cross product, using a right-handed coordinate system, we get

$$
\begin{array}{lcl}
\mathrm{i} \times \mathrm{j}=\mathrm{k} & \mathrm{j} \times \mathrm{k}=\mathrm{i} & \mathrm{k} \times \mathrm{i}=\mathbf{j} \\
\mathrm{j} \times \mathrm{i}=-\mathrm{k} & \mathrm{k} \times \mathrm{j}=-\mathrm{i} & \mathrm{i} \times \mathrm{k}=-\mathrm{j} \\
\mathrm{i} \times \mathrm{i}=\mathrm{j} \times \mathrm{j}=\mathrm{k} \times \mathrm{k}=0 &
\end{array}
$$

With the aid of these identities and the distributive law, the vector product may be written

$$
\begin{aligned}
\mathbf{P} \mathbf{x} \mathbf{Q} & =\left(\boldsymbol{P}_{x} \mathbf{i}+\boldsymbol{P}_{\mathbf{y}} \mathbf{j}+\boldsymbol{P}_{z} \mathbf{k}\right) \mathbf{x}\left(Q_{x} \mathbf{i}+Q_{y} \mathbf{j}+Q_{z} \mathbf{k}\right) \\
& =\left(P_{y} Q_{z}-P_{z} Q_{y}\right) \mathbf{i}+\left(P_{z} Q_{x}-P_{x} Q_{z}\right) \mathbf{j}+\left(P_{x} Q_{y}-P_{y} Q_{x}\right) \mathbf{k}
\end{aligned}
$$

The cross product may also be expressed by the determinant $\mathbf{P} \times \mathbf{Q}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ P_{x} & P_{y} & P_{z} \\ Q_{x} & Q_{y} & Q_{z}\end{array}\right|$

Additional relations

Triple scalar product $(\mathbf{P} \times \mathbf{Q}) \cdot \mathbf{R}=\mathbf{R} \cdot(\mathbf{P} \mathbf{x} \mathbf{Q})$. The dot and cross may be interchanged as long as the order of the vectors is maintained. Parentheses are unnecessary since $\mathbf{P} \times(\mathbf{Q} \cdot \mathbf{R})$ is meaningless because a vector \mathbf{P} cannot be crossed into a scalar Q.R. Thus, the expression may be written

$$
\mathbf{P} \times \mathbf{Q} \cdot \mathbf{R}=\mathbf{P} \cdot \mathbf{Q} \times \mathbf{R}
$$

$$
\mathbf{P} \times \mathbf{Q}
$$

The triple scalar product has the determinant expansion

$$
\mathbf{P} \times \mathbf{Q} \cdot \mathbf{R}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
Q_{x} & Q_{y} & Q_{z} \\
R_{x} & R_{y} & R_{z}
\end{array}\right|
$$

Triple vector product $(\mathbf{P} \times \mathbf{Q}) \times \mathbf{R}=-\mathbf{R} \times(\mathbf{P} \times \mathbf{Q})=\mathbf{R} \times(\mathbf{Q} \times \mathbf{P})$. Here we note that the parentheses must be used since an expression $\mathbf{P} \mathbf{x} \mathbf{Q} \mathbf{x} \mathbf{R}$ would be ambiguous because it would not identify the vector to be crossed. It may be shown that the triple vector product is equivalent to $(\mathbf{P} \times \mathbf{Q}) \times \mathbf{R}=\mathbf{R} \cdot \mathbf{P Q}-\mathbf{R} \cdot \mathbf{Q P}$ or $\mathbf{P} \times(\mathbf{Q} \times \mathbf{R})=\mathbf{P} \cdot \mathbf{R} \mathbf{Q}-\mathbf{P} \cdot \mathbf{Q R}$. The first term in the first expression, for example, is the dot product $\mathbf{R} \cdot \mathbf{P}$, a scalar, multiplied by the vector \mathbf{Q}.

UNIVERSITYOFBASRAH
COLLEGEOF ENGINEERING

MECHANICAL ENGINEERING DEPARTMENT

TWO-DIMENSIONAL FORCE SYSTEMS

Rectangular Components

The most common two-dimensional resolution of a force vector is into rectangular components. It follows from the parallelogram rule that the vector \mathbf{F} of Fig. $2 / 5$ may be written as:

$$
\begin{equation*}
\mathbf{F}=\boldsymbol{F}_{x}+\boldsymbol{F}_{y} \tag{2/1}
\end{equation*}
$$

where \mathbf{F}_{x} and \mathbf{F}_{y} are vector components of \mathbf{F} in the \boldsymbol{x} - and y -directions.
Each of the two vector components may be written as a scalar times the appropriate unit vector. In terms of the unit vectors \mathbf{i} and \mathbf{j} of Fig. 2/5, $\mathbf{F}_{x}=\boldsymbol{F}_{x} \mathbf{i}$ and $\mathbf{F}_{y}=\boldsymbol{F}_{y} \mathbf{j}$, and thus we may write:

$$
F=F_{x} i+F_{y} j
$$

Figure 2/5
where the scalars F_{x} and F_{y} are the x and y scalar components of the vector \mathbf{F}. The scalar components can be positive or negative, depending on the quadrant into which \mathbf{F} points. For the force vector of Fig. 2/5, the x and y scalar components are both positive and are related to the magnitude and direction of \mathbf{F} by.

$$
F_{x}=F \cos \theta \quad F_{y}=F \sin \theta \quad F=\sqrt{F_{x}^{2}+F_{y}^{2}} \quad \theta=\tan ^{-1}\left(\frac{F_{y}}{F_{x}}\right)
$$

Determining the Components of a Force

Dimensions are not always given in horizontal and vertical directions, angles need not be measured counterclockwise from the x-axis, and the origin of coordinates need not be on the line of action of a force. Therefore, it is essential that we be able to determine the correct components of a force no matter how the axes are oriented or how the angles are measured. Figure $2 / 6$ suggests a few typical examples of vector resolution in two dimensions.

$F_{x}=F \sin (\pi-\beta)$
$F_{y}=-F \cos (\pi-\beta)$

$F_{x}=F \cos (\beta-\alpha)$
$F_{y}=F \sin (\beta-\alpha)$

Figure 2/6

